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Magnetic coupling of two-dimensional pancake vortex lattices in a finite stack of thin
superconducting films with transport currents in the two outermost layers
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(Received 18 June 1996

We give a detailed study of the magnetic coupling between two-dimens{@balpancake vortices in a
stack ofN Josephson-decoupled superconducting thin films. The problem of a single pancake vortex in a finite
stack of layers is first considered. We then investigate the magnetic interaction between 2D pancake lattices
residing in different layers. It is assumed that all these 2D lattices have the same structure and orientation,
although it is not required that they be in perfect registry. We derive an analytical solution for the coupling
force on a pancake in a lattice arising from its interaction with a vortex lattice in another layer. As a direct
application of this solution, we consider the case wherein a magnetic field is applied perpendicular to the layers
and equal but oppositely directed surface current densities are introduced into the top and bottom layers,
respectively. For weak currents, force-balanced configurations of pancake vortices are obtained. We then show
the existence of a decoupling surface current density. Above this critical value, slippage occurs between 2D
pancake lattices in different layers. This decoupling surface current density is then calculated for different
magnetic fields and for different values Nf [S0163-1827)06901-4

I. INTRODUCTION vortex. This means that even in the presence of an applied
field tilted relative to thec axis, the stacks of Josephson-

The highT; cuprates have given renewed impetus in re-decoupled 2D pancake vortices remain perpendicular to the
cent years to the study of layered superconductors. Becausayers. The only way to destroy this alignment of pancakes
of the large anisotropy between tleeaxis and the Cu@  would be to apply transport currents to the superconducting
planes in the Bi- and Tl-based compounds, it is not possibléayers. In the absence of interlayer Josephson coupling,
to construct a satisfactory phenomenological description usfansport current injected into a given layer remains strictly
ing continuum Ginzburg-Landau or London formulations. confined to that layer. A Lorentz force acts only on the pan-
Organic layered superconductors and the more recently studake vortices residing in the layer where current flows. Nev-
ied epitaxially grown multilayer structurk® are two other ertheless, pancake vortices in different layers are magneti-
examples of systems that are best modeled by a discrete sslly coupled to each other, so that any current-induced
of weakly coupled superconducting layers. motion of pancakes in a given layer gives rise to motion of

Vortices in these layered materials differ remarkably inpancakes belonging to current-free layers. This is essentially
structure from Abrikosov vortices. For instance, tilted linesthe idea behind the early work on dc flux transformiers
of Abrikosov vortices in continuous superconductors are reand the more recent experiments done on High-
placed in the layered materials by tilted stacks of intralayesuperconductor® >3
two-dimensional2D) pancake vortices joined by interlayer  None of the theoretical work cited above has incorporated
Josephson strings. The description of vortices in layerethe effects arising from the finite number of superconducting
structures within the Lawrence-Doniach matéf has been layers present in real samples. This is regrettable, especially
treated extensively in the literatut&:!® The Lawrence- if one wishes to model experiments similar to those on dc
Doniach description has been further simplified by entirelyflux transformers where transport currents are injected into
disregarding the effects of the weak interlayer Josephsothe outermost layers of the sample. An attempt has been
coupling. This approach has proven to be useful in studies ahade in Ref. 34 to calculate the magnetic field and current
vortex-lattice melting at low field§"*® In particular, it is  distribution generated by a single 2D pancake vortex in a
shown in Ref. 18 that the characteristic shape of the low-fieldinite stack of Josephson-decoupled superconducting layers.
3D melting line is obtained when interlayer electromagneticThis approach involves replacing all the screening layers
interactions are taken into account and Josephson couplirepove and below the 2D pancake layer with a superconduct-
entirely neglected. ing continuum that allows supercurrents to flow only parallel

Within this model, the layered superconductor is taken aso the layers.
an array of parallel thin films, wherein 2D pancake vortices We present in this paper a thorough investigation of the
residing in different layers can interact with each other onlymagnetic coupling between 2D pancake vortices in a stack of
via magnetic coupling®**19-?1 For an applied magnetic N superconducting films with no Josephson coupling, taking
field parallel to thec direction, these vortices form straight into account the full discreteness of the layered structure. We
stacks. Because currents can flow only within the supercorgive an analytical solution for the magnetic force exerted by
ducting layers, a nonzero component of the applied field para 2D vortex lattice on a pancake vortex belonging to another
allel to the layers exerts zero net force on any 2D pancakéttice in a different layer. It is assumed that these two lat-

0163-1829/97/54.0)/66368)/$10.00 55 6636 © 1997 The American Physical Society



55 MAGNETIC COUPLING OF TWO-DIMENSIONAL . .. 6637

+2 ©
a¢(p,z,m)=f0 dgA(g,m)Ji(ap)Z(q,z,m), (1)
— =N-1
" where J,(gp) is the first-order Bessel function of the first
n=N-2 kind. Z(qg,z,m) has the following forms: fon<z/ssn+1,
. O=n=N-1,
n=m+l O In—mls
Z(9,z,m)= — e ~nmnN=MSgjn n+1)s—z
o (@.2m)= gl haf (n+1)s—2]
n=m-l +e~ Qneamn*t1-misging(z—ns)}; 2
: : for z/s=n, O0sn=N-—1,
— =1 — -_—
; ! Z(q,z,m)=e" Qnaln-mis, (3
f n=0 otherwise,

FIG. 1. A single 2D pancake vortex in a finite stackoBuper-  Z(d,Z,m)
conducting layers. Zero Josephson coupling between the layers is _ a Al (N—
assumed and no thermal fluctuations or pinning within the layersis  _ e~ n-in(N-1mmsgalz=(N 1)51’ ZIs>N-1
taken into account. The interlayer spacingsjsand each layer is e QomMsgdZ  z/s<0.
referenced via an integer indexranging from 0 toN—1. Thez . _ 3 .
axis is perpendicular to the layers, such taatns. Hence, the A(d,m) and the exponential ternes Qnnin =S given above
planez=0 coincides with the bottom layer. Lastp=m corre- ~ are solved subject to two conditions.
sponds to the layer containing the 2D pancake vortex. The first condition is the equation relating the vector po-
tentiala, and the sheet current densky, generated by the
single pancake: for&n<N-—1,

(4)

tices have the same structure and are displéwetrotated
relative to each other. As an application, we study the re-

c
sponse oiN perfectly triangular 2D pancake latticésne in K,(p,n,m)=— PN a,(p,z,m) - ;iﬁn,m}.
each layerto two equal but oppositely directed current dis- m z=ns TP 5
tributions flowing in the top and bottom layers. For simplic- ®)

ity, we assume that these currents flow perpendicular to Fhe 2D thin-film screening lengti\ is here defined as
nearest-neighbor direction. The spatial configuration of the)?/d. (As mentioned in Ref. 20, some papers in the litera-
2D pancake vortices is determined for sufficiently weak apture defineA without the factor of 2. A symbol such as
plied currents. We also demonstrate the existence of a maxy,_ denotes a partial derivative with respect to the subscripted
mum surface current density; above this value, slippage 0Goordinate. For the phaseof the order parameter, we have
curs between pancake lattices in different layers. Lastly, wgsed the gauge= — ¢ for n=m andy=0 otherwise.¢, is
determine the magnitude of this decoupling current densityne flux quantumhc/2e and &, ,, is the usual Kronecker
for different values ofN and for different magnetic fields dgjta. ’
applied along the axis. The second condition givel§,, in terms of the disconti-
nuity in the radial component of the magnetic field across a

layer. In terms of the vector potential,, we can write this
IIl. SINGLE PANCAKE IN A FINITE STACK OF THIN condition as

SUPERCONDUCTING LAYERS

We begin by calcul'ating the magnetic vector 'potential for K (p,n,m)=— i[&za¢(p72,m)|z=ns+

a 2D pancake vortex in a stack Nf superconducting layers. 4

It is assumed throughout that no Josephson coupling is —a,a,(p,z,m)] . (6)

present between the layers. We also emphasize that the ef- 28\ P: & z=ns" 1,

fects of thermal fluctuations or pinning within the layers arefor 0O<n<N-—1. Let us combine this with the first condition

not taken into account. by eliminatingK ,. We arrive at the following condition for
Defining s to be the interlayer spacing, we consider eachthe vector potential at any layersshh<N-—1:

of theN layers as a thin film whose thicknedss much less

than the bulk penetration depily. Assume that the bottom A

layer coincides with the plarne=0. Hence, we can reference a‘P(p'Z'm)|Z=nS:E[‘Qz%(p’z’m”z:"s*

the layer az=ns by the integem (with 0=<n=N-1.) Let

layer m correspond to the pancake layer. For the time being, —a,,(p,z,m)| 1+ bo s

choose the pancake to be centered onzleis. (Refer to 28p\P:5 1 lz=ns 2@p ™™

Fig. 1) )
We adopt an approach similar to that in Ref. 20. In cylin-

drical coordinates, the vector potential has only one nonzere can substitute our expression for the vector potential into
component, the above condition. Taking the Hankel transform of both
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sides of the resulting equation, we arrive at solutions forerage flux densit is equal tog,/A, whereA is the area of
A(g,m) and the quantitieg™ Qn.min=mls, a lattice unit cell.
In order to write the aforesaid solutions explicitly, we  Let us now pick two such lattices, one in layieand the
introduce two functions: other in layerj #i. From equilibrium, suppose that the lattice
in layer j is then displaced without any rotation relative to

f(aq)=(1+2/gA)sinhgs+costys, (8) the lattice in layei. Denote this displacement loly. What is
_ the coupling force between two such pancake lattices?
g(q)=2[(1/gA)sinhgs+ coshys]. ©) To answer the above question, let us first focus our atten-

tion on one pancake from each of the two layers. Choose the
Z axis to be the axis of the pancake in layeo that the other
pancake has coordinates=(p;,¢;). Let K(r;,j,i) be the
sheet current density generated by the pancake in ager
the position of the pancake in layer The force exerted on
the latter by the former pancake is

From these, we can construct the following set:

e %, n=0,
h(g,n=0)=4 Uf(q), n=1, (10)
Ng(a)—h(g,n=1)], n>1.
In terms of the above quantities, F(rj J,) =K(rj j,i) X (o l€)2 (14)

for a magnetic field in thetz direction. Using the results
obtained in the previous section, we find that the above equa-
tion can be written as

e_QmM”_mb

1

].—.[ h(q,m— p)a
p=0

r m

apj)
q

N I . .
=4 1, n=m, F(rJ'J’I):p(QDJ)ZWZAZIO dq 1( C(qalvl)v (15)
n—m—1

II h(@N-1-m-p), m+isnsN-1,
p=0

wheref;(qoj)zfcos;:jﬁsingoj and
(11) Co sinhgs Z(q,i,j)
L= G —haN-1-)—h(a))’

Note thatZ(q,i,j)=e"uil=IlIin Eq. (16). F(r;,j,i) is an
attractive force that tends to bring the two pancake vortices
into alignment. This can be shown explicitly where\ | and

(120  0<Ji—j|s<\), for which Eq.(15) reduces to

Aside froms and A, there is another important length in . bo \2Npitli—j[*s—|i—jls
the problem. This is the effective penetration deptior the F(rj.) ")“P(ﬁ"i)( ZwA) P
decay of fields induced by currents flowing parallel to the (17)
layers. This is defined byuzs)\i/d. It follows from this
definition thaf®

(16)
and

doSinhgs
mqA[g(q)—h(g,N—1—m)—h(q,m)]"

A(q,m)=

with the unit vectorf)(cpj) pointing from thez axis (passing
through the center of pancakgto the vertical axis through
the center of pancakg

Analogous to the approach taken in Refs. 25-27, we then

We assign values teand) that are characteristic of one W'ité the coupling force on a pancake in layedue to its
of the high-temperature superconductgTe validity of the ~ interaction WIFh the vortex lattice in laygr as a sum over
above results are, nevertheless, not confined to such value&eciprocal lattice vectorg:

In Bi-2212, we typically haves~15 A and \j=2500 A
(which is about 163). These put the value of at approxi-
mately 8.3<10° A or 5.6x 10% at temperatures close to
T=0.

Although the model described above puts no restrictio
on the number of layers that can be considered, we sha
limit our present investigation to stacks with thicknesses of
abouth| or less. The thicknesses of high-temperature super-
conducting thin films are often less than 200 layers.

A=2\fls. (13)

1 _
Fe(dy )= 2.2, Glg.J.)e” . (18)

The vectorG(g,j,i) in the above equation is the 2D Fourier
ransform ofF(r,j,i):

G(g,j,i)=f d?re 197 F(r,j,i). (19

We can evaluat& explicitly with the aid of Eq.(15). This

I1l. COUPLING FORCE BETWEEN 2D
PANCAKE LATTICES

Assume that a magnetic field applied perpendicular to the
layers gives rise to a 2D pancake lattice in each layer. At
equilibrium, all these lattices are in perfect registry along thewith g denoting the magnitude ofg. Observe that
z direction (i.e., the pancakes form vertical stagkEhe av-

evaluation yields

. id5 g -
G(97J,|):—W—Azggc(g,lyl), (20

G(—g,j,i)=—G(g,j,i). Therefore,
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2

. ®o g o :
Feldy )= Rz 2, g3C.0Dsing-dy). (2D B?eld

The above result is particularly convenient for the case of Ky’ +2 Ky
high magnetic fieldgi.e., fields in the order of a tesjakor / D D \
this case, only a few reciprocal lattice vectors are needed to R ) S
obtain a good approximate value for the coupling force. n=4 = =

The opposite limit is the case of very weak magnetic N N N s
fields and displacementd; that are much smaller than the , _, e A o

nearest-neighbor distance of the pancake lattices. One can -] Qa
show from the above results that - G>—a —>
n=2 N
Ilm Fc(djvjal):F(dja.I!I) (22) ‘o
B0 _, R B o
_ o ot T | L s
The coupling force the'reby reduces to a pairwise interaction s e —c r
between pancake vortices. n=0 P4 A Y
Kgm Kfa/

IV. TRANSPORT CURRENTS AT THE TOP
AND BOTTOM LAYERS FIG. 2. 2D triangular pancake lattices in a finite stack of thin

Consider the special case when the 2D pancake |attice%1perconducting_films with equal but oppositely dirgctec_j _transport
discussed in the previous section are perfect triangular la€urrents flowing in the top and bottom layers. For simplicity, only

tices. Leta denote the nearest-neighbor distance in each laff'¢ case of five layers is illustrated. The 2D pancake lattices in the
different layers are assumed to interact with each other only via

tice. The areaA of a unit-cell parallelogram is therefore . . ;
5 S . . magnetic coupling. Thg components of the surface current densi-
equal toa?\/3/2. At equilibrium with a perpendicular mag- ties in the top and bottom layers aNE;yop and KSot’ respectively,

netic field, we had noted that the pancake lattices in the ., Ktopz_KSOt. Pancakes drawn in solid lines correspond to the

. : . . ; v
different layers will all be in perfect registry with one an- case when no sheet currents are applied. The pancakes outlined in

other. i i dashed lines correspond to a force-balanced configuration associ-
But suppose we apply equal but oppositely directed shegfteq with nonzer&*® andK ™. By symmetry, the pancakes in the

currents to the top an(_j bottom layers. Lorentz forces arisingentral layem=2 are unaffected by equal but oppositely directed
from these currents will then move the top and bottom pansurface currents in the top and bottom layers. Fhexis goes

cake lattices from their equilibrium positions. We shall only through five pancakes whose equilibrium positions lie along a com-
consider currents that preserve the original orientations ofon vertical. A sketch of these same five pancakes is shown with
both top and bottom lattices. Such displacements will thenhe top and bottom surface currents turnedtweir resulting force-
cause the other lattices in the interior layers to move, keepingalanced positions connected by dashed Jines
their orientations unchanged. If the magnitude of the applied
currents is not too large, then all the lattices in the differenfiixed to their new positions, we then allow the lattices in the
layers will inevitably stop moving as they relax to new po- interior layers to relax until the full force-balanced configu-
sitions. In these new locations, the net force on any of theation of pancakes is established.
lattices will once again be zero. Let x; be thex coordinate of the pancake in layerlf we

For convenience, let us restrict the present discussion toeglect terms involving the 2D pancake mass, we arrive at
an odd number of layers. L&fl be a positive integer, such the following force balance equations for pancake lattices in
that the total numbeN of superconducting layers is equal to the interior layers: for £i<N-2,
2M+1.

Let us also restrict our attention to a setfpancakes AN
whose equilibrium positions are aligned along Ft)he direction ; Fodx=xi ) =mx. @3

perpendicular to the layers. Choose the axis of this stack Oéummation symbols likeS.. indicate that we exclude
J#i

ancakes as the axis. As before, we take the bottom layer =" . . .
Itoo be the plang=0 y j=i from the summation range9j<N-—1.F, is the com-

For simplicity, assume that all lattice displacements occuPonent ofF; along the nearest;nmghbor axis apds the
only along a certain nearest-neighbor direction. Choose th¥iscous drag coefficient. Finally; is the time derivative of
X axis to be along this direction. This corresponds to makingi -
the transport currents at the top and bottom layers flow par- As the system approaches its final force-balanced con-
allel to they axis. Refer to they components of the surface figuration, all lattice motions in the interior layers cease:
current densities in the top and bottom Iayersl@?? and
Ky® respectively, such tha€,P= —K®'. (See Fig. 2.

In order to compute the final displacements of the pan-
cakes described above, it is convenient to begin by displader 1<i<N-—2. To obtain the final displacements of the
ing the top and bottom lattices to new positioxg ; and  N—2 pancake lattices in the interior layers, we must there-
Xg, respectively, withxy_,=—X,. Keeping these lattices fore solve theN—2 equations in Eq(23) self-consistently,

limx;=0 (24)

t—oo
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subject to theN—2 boundary conditions in Eq24). Actu-

T T T

ally, we can reduce this problem thbl—1 equations in — stable (1) 3 layers
M — 1 unknowns since, by symmetny, =0 for all time and = unstable (2) 5layers
Xom_i=—X; for 0Osi=sM—1. (3) 11 layers

(4) 51 layers
(5) 101 layers
(6) 151 layers

The equations that determine the force balance on the top
and bottom vortex lattices are as follows: for the bottom
layer,i=0,

(cdo/ K)
S
8

M= 166.67 s

é , 0I5 s=15 A
2 Fox(Xj=X0,],00= = =Ky, (25 al
i
for the top layerj=N-—1, § 0.10
2
. bo
2 Fo X bN=1==2KP. (20
! é 0.05
In other words, for the top and bottom pancake lattices, the
Lorentz force produced by eith&’° or K®°is exactly bal- .
X y y X . ]
anced by the coupling forces due to the pancake latticesin % ,,,1____ (D7 T T
S 0.00

the other layers. Having self-consistently calculated the final
displacements of the interior pancake lattices, we can then
use either Eq(25) or Eq.(26) to solve for the applied surface
;l:g;inidKebr;ts;tles flowing in the outermost laydRecall that 005, T 020 050 0.40 050
y_ oo . . : (a)
The full numerical solution to the problem outlined above oo e
and other related results are discussed in the next section.

FIG. 3. Plots of the bottom layer surface current denN@?t
versus the bottom lattice displacemegtfor 3, 5, 11, 51, 101, and
V. NUMERICAL RESULTS AND DISCUSSION 151 layers. A 0.1 T magnetic field is applied perpendicular to the

In many of the succeeding figures, we express surfac@yers’ such thaa=103.03.

current densities in units ot¢,/A? For s~15A and currents. The stack with the largest bottom lattice displace-
A~5.6x 10", this unit is approximately 30 mA/cm. ment alongx approximately corresponds to the configuration
Figure 3 shows plots oK{*, the y component of the at maximum surface current density for 101 layersin a 0.1 T
surface current density in the bottom layer, as a function operpendicular field.
the bottom lattice displacement, relative to equilibrium. What is immediately striking about Fig. 4 is how far the
The magnetic field perpendicular to the layers 5 D.. This  top and bottom lattices are displaced, compared with the
is equivalent to having a pancake lattice spaangf about  relatively small displacements of the interior lattices. If the
103s. The range of values for, spans half the lattice spac- x and z axes were identically scaled, the pancakes in the
ing. The curves can be extended antisymmetrically abouinterior layers would appear almost vertically aligned, while
Xpo=al2 to cover the full periodic intervdl0, a]. Plots cor- the top and bottom pancakes would look quite dissociated
responding to 3, 5, 11, 51, 101, and 151 layers are giverfrom the rest of the stack. Note, however, that the top and
Recall that the value ok is taken to be about 187for bottom pancakes are not really dissociated since they are still
Bi-2212; hence, the values dfl considered range from magnetically coupled to the pancakes in the interior.
around 2-91 % percent of the value Xf. Figure 5 shows semilog plots of the decoupling surface
When the applied currents are small, the lattices are ableurrent densityK; as a function of the magnitude of the
to rearrange themselves so that the forces on the top andagnetic field applied perpendicular to 101 superconducting
bottom pancakes arising from these currents are cancelled bgyers. The range of field values represented is between 0 T
the forces exerted by the lattices in the interior. But as everyand 1.0 T. For greater detail, we have included an expanded
curve in Fig. 3 clearly shows, there is a maximum surfaceview of that portion of the curve close to the zero-field limit.
current density, the decoupling surface current derisjty The decoupling surface current densiy decreases
above which the interior pancakes are unable to generat@onotonically with increasing field throughout the entire
forces on the top and bottom lattices that cancel the forcegange represented. Whereas the current density at 0.001 T is
due to the applied currents. The sections of the curves fas significant 77% of the zero-field value, the current density
which K2 versusx, have negative slope@lashedl corre- at0.1 Tis only around 15%. At 1.0 T, the decoupling current
spond to unstable force-balanced configurations of pancakdensity is reduced to 4% of its value at zero field.
lattices. Finally, Fig. 6 gives plots of the decoupling surface cur-
Figure 4 shows a few stable configurations for therent density as a function dds. Curves forB=0 T, 0.01 T,
N=101 case in Fig. 3. Notice that the scales used forxthe and 0.10 T perpendicular fields are shown. The last two
andz axes are different. For brevity, only one pancake fromfields correspond to values farof approximately 326 and
each layer is shown; these pancakes would form a straight03s, respectively.
stack along thez direction in the absence of the applied As illustrated quite clearly by the three curves in Fig. 6,
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FIG. 4. Force-balanced configurations of 101 pancakash

) FIG. 5. Semilog plots for the magnetic field dependence of the
belonging to a 2D triangular lattice in each layerthe presence of

A e ACTH decoupling surface current densiy (applied in opposite direc-
surface current_densme@{/ PandK® flowing in kt)ge top and bottom  tjons to the top and bottom layenseeded to magnetically decouple
layers, respectively. We assume thgf’= —Ky®. A 0.1 T mag-  the outermost 2D pancake lattices from those in the interior. The

netic field is applied perpendicular to the layers, such thatyymper of layers is 101. The value Kf; in the zero-field limit is
a=103.03%. The magnitudes of the top and bottom surface currenjncjuded.

densities considered correspond to bottom lattice displacements of
5.0s, 10.G5, and 18.4% from equilibrium(i.e., a straight stagk The

x axis is expanded relative to tizeaxis to show greater detail. sizable number of pancakes in the layer directly below the

uppermost lattice will be within a distanceg from the top

the decoupling surface current dendfty for a given perpen- pancake. This is also true for a successively smaller number
dicular field B approaches a saturation value as the numbeof interior pancakes as one continues on to the layers further
of layers is increased. Moreover, this saturation current dendown the stack.
sity increases with decreasing field before it finally ap- Thus, we would expect the strongest coupling with a pan-
proaches a constant value in the zero-field limit. cake in the uppermost lattice to come from pancakes belong-

For what range ofNs values is saturation achieved for a ing to layers a distance less than from the top. But how
given perpendicular magnetic field? For the zero-field curvanuch less than|? Although the situation is quite compli-
(a—) in Fig. 6, we see that this saturation is reached forcated, the two curves in Fig. 5 for the caseasf \| show
Ns=O(\). This can be understood as follows. In Ref. 20, itthat this distance i©(a).
was shown that a pancake in one layer of an infinite stack is Order of magnitude estimates can be obtained analytically
effectively screened by the neighboring layers within a dis-f, to lowest order, we ignore the effects arising from the
tance ofA . Now, consider a finite stack of pancakes, one tofinite thickness of the superconducting stack. The case of
each superconducting layer. If the number of layers exceedsfinite thickness has been worked out in Ref. 20; suppose
2\ /s, we expect that the pancakes deep in the interior wilthat we use the results obtained from this calculation to ap-
have no interaction with the top and bottom pancakes. Th@roximate the interaction between 2D pancake lattices for a
top or bottom pancake cannot couple to an interior pancakénite stack of superconducting layers. To further simplify
corresponding to a certain layer if that layer is at a distancenatters, we assume that all the interior pancake lattices are in
greater than\. perfect registry for all values of top and bottom lattice dis-

The situation described above is certainly valid for low placements. From what has been discussed in connection
perpendicular magnetic fields. But what happens at higlwith Fig. 3, we see that the last assumption is a reasonable
enough fields, such that the 2D lattice constans smaller  approximation.
than\? For the case ofi—x, each layer has at most one  Let us apply the above approximation to the zero-field
pancake that can interact with a top or bottom pancake; but limit. In this limit, we have argued that the characteristic
a<\|, this is no longer true. thickness for which the value &€, saturates is of the order

As an illustration, consider a pancake belonging to theof \|. For relatively thin samples,N—1)s<\, this ap-
lattice in the top layer. If is significantly smaller thak, a  proximation yieldsK 4~ (cpo/4m*A?)(N—1), whereas for
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11 mA/cm for the same value of;. The corresponding
value obtained numerically is approximately 6 mA/cm.

VI. SUMMARY

In this paper, we studied the magnetic coupling between
2D pancake vortices in a stack Nf superconducting films.
The effects of Josephson coupling, thermal fluctuations, and
pinning were not taken into account. We considered a pair of
2D pancake vortex lattices residing in different layers, both
having the same structure and orientation, and displaced rela-
tive to each other. An analytical expression was obtained for
the coupling force on a pancake in one lattice due to its
interaction with the pancakes in the other vortex lattice. As-

o suming perfect 2D triangular pancake lattices in each layer,
we investigated the case when equal but oppositely directed
surface current densities were applied to the top and bottom
layers. For simplicity, the surface current directions were

v chosen such that all lattice displacements were along one
e nearest-neighbor direction. The results were as follows.

S If the magnitude of the applied surface current densities
. was set above a certain valkg, then the top and bottom
0.00 : ; ; 2D pancake lattices decoupled from the rest. Below the de-

00 02 04 06 coupling surface current density, stacks of 2D pancake
Ns  (hu) vortices formed. These stacks did not form uniformly tilted
lines. Instead, the displacements of the top and bottom pan-

FIG. 6. Dependence oNs of the decoupling surface current cakes were shown to be large compared with those of the
density K4 (applied in opposite directions to the top and bottom jnterior pancakes.

layers needed to magnetically decouple the outermost 2D pancake Eqr fixed N, the decoupling surface current density de-

lattices from those in the interior. Curves are given B+0T, creased a8 was increasedi.e., as the 2D pancake lattice

001 T,and0.10 T fiz_elds applied perpendicu_lar to the layers. Th%onstanta was decreasgdFor fixedB, the decoupling sur-

values ofa Correspond'ng o the two nonzero fields are 325 affd face current density initially increased with increashkhgand

103.03, respectively. then attained a saturation value. dki\|, this saturation
occured wheNs~O(a). If a>\, saturation was achieved

; : oo for Ns~O(\y).
the case of relaively thick samplesi¢ 1)s>A, it yields An immegiate extension of our approach is the study of

. 242 ; ~
Ka~(Cho/dm"AT) () /s). With 11 layers and,~167s, the the dynamics of the pancake lattices in Josephson-decoupled

former estimate gives a value of about 7.5 mA/cm, which isI ith unif o in th fat A
comparable with the numerically computed value of approxi-ayers with uniform pinning, In the presence ot a transpor
urrent in one of the outermost layérsThis extension is

mately 6.9 mA/cm. The latter estimate for the same value Ofelevant t0 de flux transformer experiments done on hiah-
A\ is about 126 mA/cm, which is slightly over twice the nu- P 9

merically calculated value of approximately 60 mA/cm. ;Ii—énseu dp?gc?r?gulﬁi?ézyuitigexv S\Eimhlc()::r v;e hri\;:halrt?]ae%):e?if;}_
For finite values ofB, we can argue, using the same ap- : PP '

I . R V-l curves can be computédiand these can then be com-
prOX|mat|on,. than/3/47~0.14a is the characteristic thick- pared with experimental data to test the validity and limita-
ness for which the value df, saturates. Moreover, we can tions of our model
show thatK 4~ (c¢/47*A2)(N—1) whenNs<0.14a, and '

Ky~ (cool4m?A?)(0.14a/s) when Ns>0.14a. Assume a
0.1 T field corresponding t@~103s. The first estimate,
valid for relatively thin samples, equals approximately The authors wish to thank V. G. Kogan, Qiming Li, and J.
1.5 mA/cm for 3 layers andl|~167s. This is fairly close to  McDonald for helpful comments and suggestions. Ames
the numerically computed value of 1.0 mA/cm. The second.aboratory is operated for the U.S. Department of Energy by
estimate, involving relatively thick samples, is aboutlowa State University under Contract No. W-7405-Eng-82.
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